# Boosting Research for a Smart and Carbon Neutral Built Environment with Digital Twins (SmartWins)

Assoc Prof Dr.-Ing. Paris A. Fokaides

Chair of the Research Group for Sustainable Energy in the Built Environment

Faculty of Civil Engineering and Architecture

Kaunas University of Technology



### The SmartWins Project at a glance

| Project Title    | Boosting Research for a Smart and Carbon Neutral Built Environment with Digital Twins |
|------------------|---------------------------------------------------------------------------------------|
| Project acronym: | SmartWins                                                                             |
| Programme        | Horizon Europe Framework Programme (HORIZON)                                          |
| Call             | Twinning (HORIZON-WIDERA-2021-ACCESS-03)                                              |
| Type of Action   | HORIZON-CSA HORIZON Coordination and Support Actions                                  |
| Project Budget   | 1499974 €                                                                             |
| KTU Budget       | 571875 €                                                                              |
| Project Duration | 01.10.2022-30.09.2025                                                                 |



### The SmartWins Project Short Description


- Artificial intelligence, digitalisation, and digital twin technologies have led to many recent advancements.
- In collaboration with the Kaunas University of Technology, Lithuania, the EUfunded SmartWins project aims to assist the university's Sustainable Energy in the Built Environment research group to improve its research capacities.
- Relying on research and cooperation with leading energy institutions and universities, the project aims to discover novel ways to high-quality research on the topic of next generation digital twins, applied for allowing the transition to a smart, sustainable, resilient and carbon neutral built environment.



- Twinning aims to enhance networking activities between the research institutions of the Widening countries and top-class leading counterparts at EU level by linking it with at least two research institutions from two different EU MS.
- Twinning projects aim to build on the potential of networking for excellence through knowledge transfer and exchange of best practice.
- Twinning actions intend to help raise the research profile of the institution from the Widening country as well as the research profile of its staff including a special focus on strengthening the research management and administrative skills of the coordination institution from the Widening country.



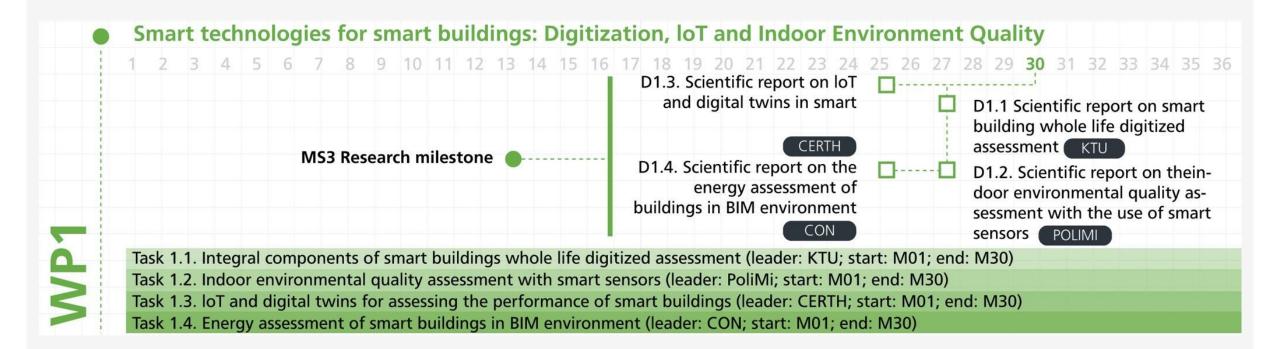
#### What are the Twinning projects?





## SmartWins Concept in a Nutshell

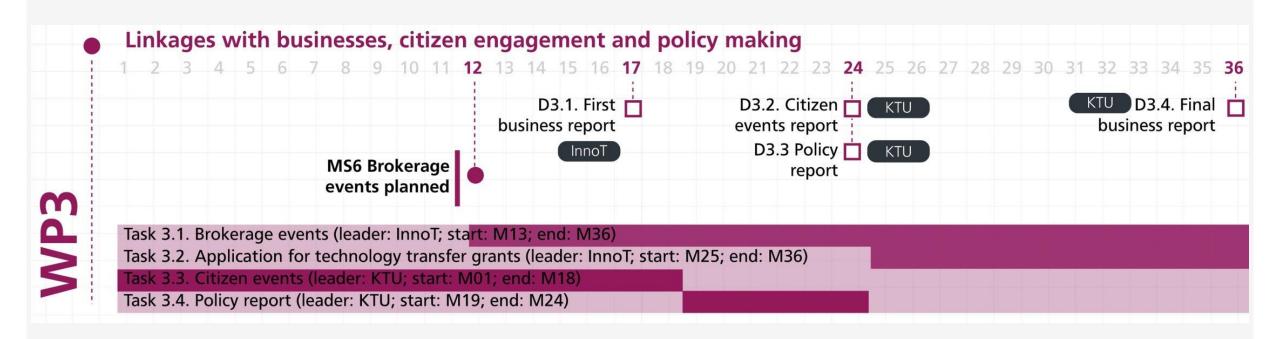




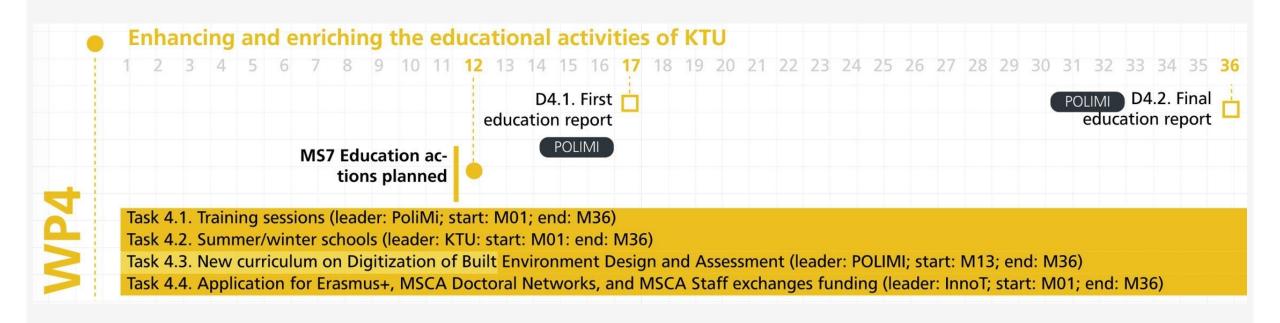



### SmartWins Consortium - KTU Faculty of Civil Engineering and Architecture




















Objective: Improve KTU's research competence in sustainable building engineering using digital twins.

Task 1.1: Integral Components of Smart Buildings

- Leader: KTU
- Duration: M01 to M30

•Focus: Analyze life-cycle assessment and sustainability in building energy assessment; develop sustainability indicators; integrate BIM documents for environmental assessment.



Task 1.2: Indoor Environmental Quality Assessment

Leader: PoliMi

•Focus: Review and implement research on IEQ factors, tools, and measurements; evaluate indoor environmental quality using advanced tools.

Task 1.3: IoT and Digital Twins for Smart Buildings

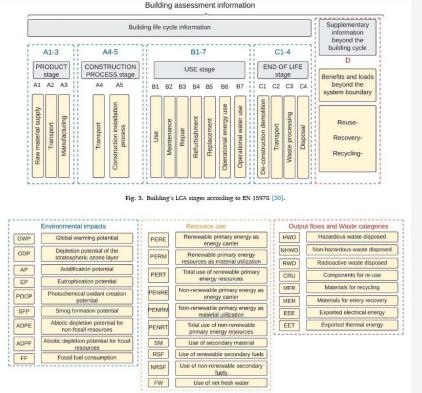
Leader: CERTH

Focus: Develop monitoring and calculation procedures for operational energy assessment using smart sensors and digital twins; document current practices and data management.

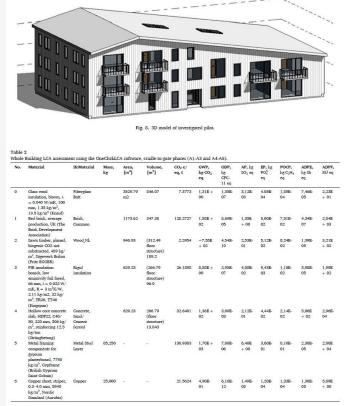


Task 1.4: Energy Assessment in BIM Environment

Leader: CON


•Focus: Incorporate energy and non-energy aspects in building assessments; develop asset-based methodology for BIM environment.


Deliverables:

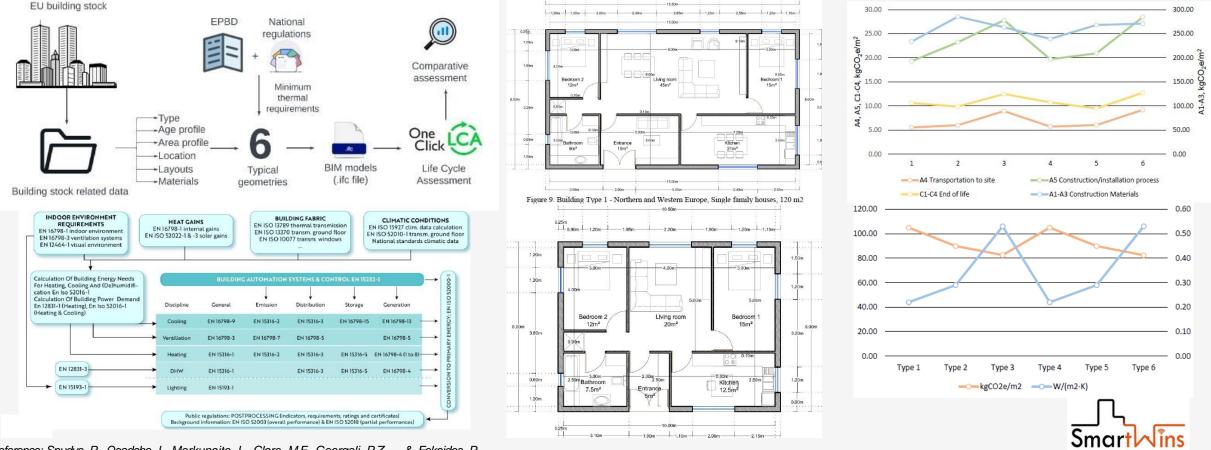

- D1.1: Scientific report on smart building assessment (KTU, M30)
- D1.2: Report on indoor environmental quality (PoliMi, M30)
- D1.3: Report on IoT and digital twins (CERTH, M30)
- D1.4: Report on energy assessment in BIM (CON, M30)



#### Task 1.1 BIM to LCA application








Reference: Klumbyte, E., Georgali, P. Z., Spudys, P., Giama, E., Morkunaite, L., Pupeikis, D., ... & Fokaides, P. (2023). Enhancing whole building life cycle assessment through building information modelling: Principles and best practices. Energy and Buildings, 296, 113401.



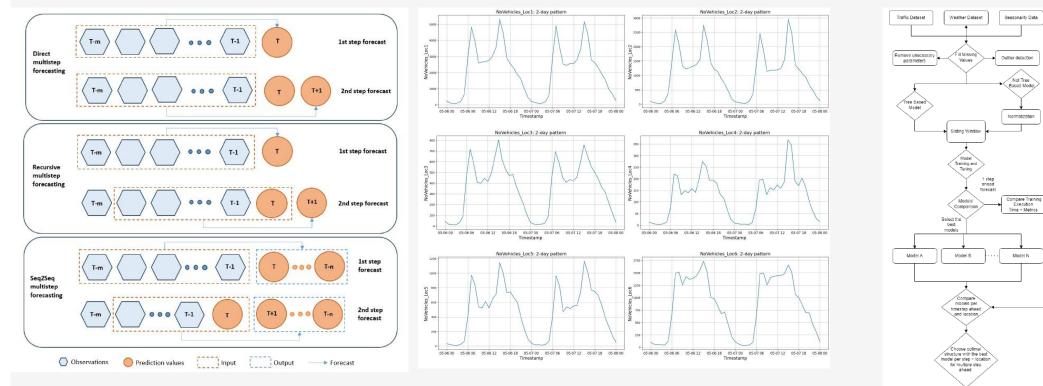

### WP1 - Achievements in Brief

# Task 1.1 A Comparative Life Cycle Assessment of Building Sustainability Across Typical European Building Geometries



Reference: Spudys, P., Osadcha, I., Morkunaite, L., Clare, M.F., Georgali. P.Z., ... & Fokaides, P. (2024). A Comparative Life Cycle Assessment of Building Sustainability Across Typical European Building Geometries, Energy

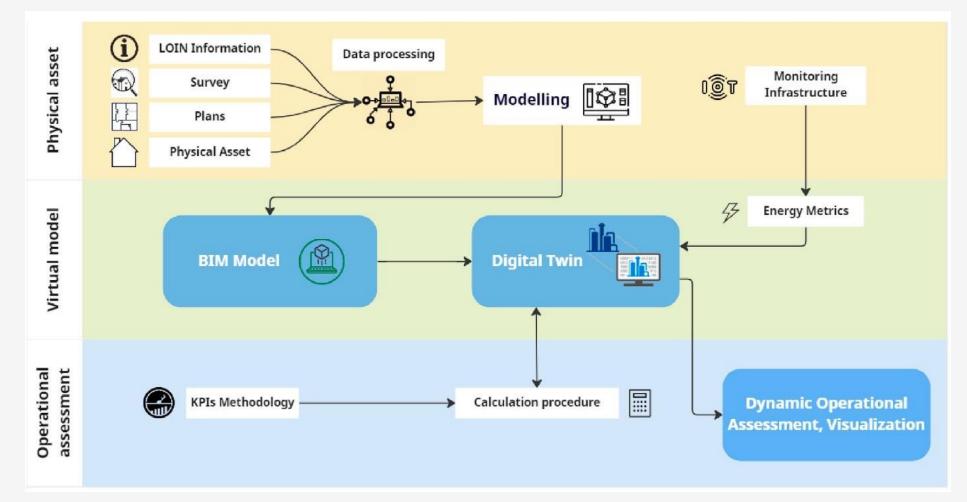
#### Task 1.1 Geometric parameter updating in digital twin of built assets




Reference: Osadcha, I., Jurelionis, A., & Fokaides, P. (2023). Geometric parameter updating in digital twin of built assets: A systematic literature review. Journal of Building Engineering, 106704.



## WP1 - Achievements in Brief

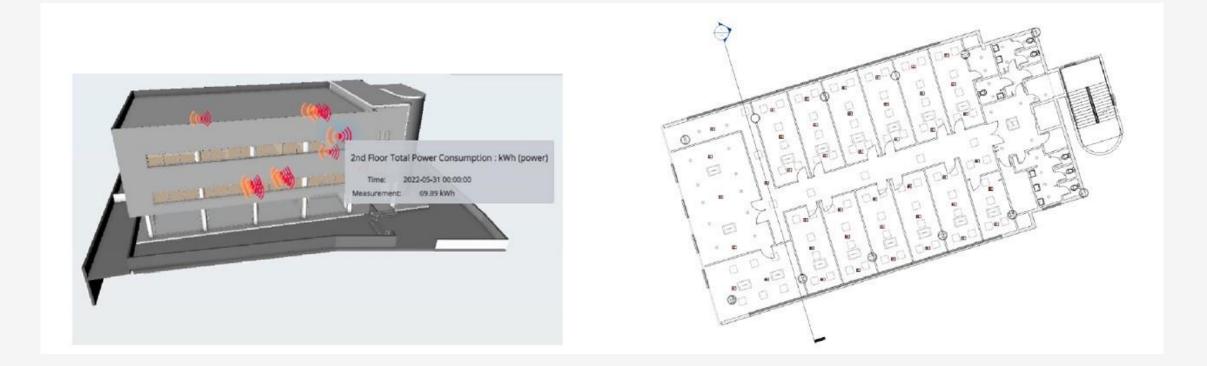

Task 1.3 Urban traffic congestion prediction: A multi-step approach utilizing sensor data and weather information



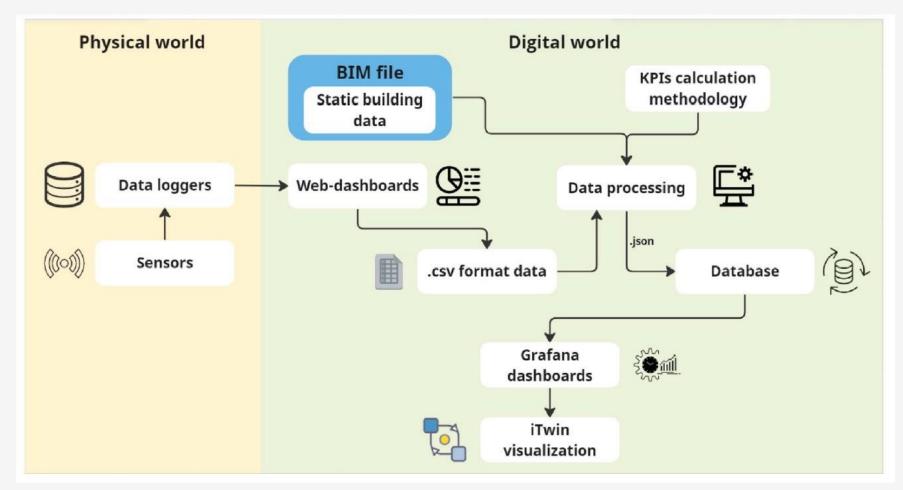


Reference: Tsalikidis, N., Mystakidis, A., Koukaras, P., Ivaškevicius ,M., Morkunaite, L., ...& Tzovaras D. (2024). Urban traffic congestion prediction: A multi-step approach utilizing sensor data and weather information. Smart Cities, (MDPI)

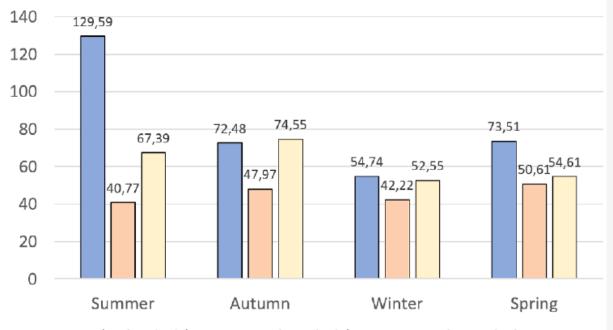
# First evidences on Smart Operational Rating




# First evidences on Smart Operational Rating Assessed Indicators


| Total Power/Occupancy                                  |   | kWh/occupants   |
|--------------------------------------------------------|---|-----------------|
| Total Power/Occupancy Hours                            |   | kWh/h*occupants |
| Total Power/Area                                       |   | kWh/m²          |
| Total Power/Volume                                     |   | kWh/m³          |
| Heating Consumption per Energy Carrier/Occupancy       |   | kWh/occupants   |
| Heating Consumption per Energy Carrier/Occupancy-hours | - | kWh/h*occupants |
| Heating Consumption per Energy Carrier/Area            |   | kWh/m²          |
| Heating Consumption per Energy Carrier/Volume          | - | kWh/m³          |
| Cooling Consumption per Energy Carrier/Occupancy       |   | kWh/occupants   |
| Cooling Consumption per Energy Carrier/Occupancy-hours |   | kWh/h*occupants |
| Cooling Consumption per Energy Carrier/Area            |   | kWh/m²          |
| Cooling Consumption per Energy Carrier/Volume          |   | kWh/m³          |
| Weather-Normalized Heating & Cooling Energy Cons.      |   |                 |

| Lighting/Occupancy                                       |   | kWh/occupants   |
|----------------------------------------------------------|---|-----------------|
| Lighting/Occupancy-Hours                                 |   | kWh/h*occupants |
| Lighting/Area                                            |   | kWh/m²          |
| Lighting/Volume                                          |   | kWh/m²          |
| Electrical Appliances Energy Consumption/Occupancy       | - | kWh/occupants   |
| Electrical Appliances Energy Consumption/Occupancy-hours | - | kWh/h*occupants |
| Electrical Appliances Energy Consumption/Area            |   | kWh/m²          |
| Electrical Appliances Energy Consumption/Volume          | - | kWh/m³          |
| DHW Consumption per Energy Carrier/Occupancy             |   | kWh/occupants   |
| DHW Consumption per Energy Carrier/Occupancy-hours       |   | kWh/h*occupants |
| DHW Consumption per Energy Carrier/Area                  |   | kWh/m²          |
| DHW Consumption per Energy Carrier/Volume                |   | kWh/m³          |

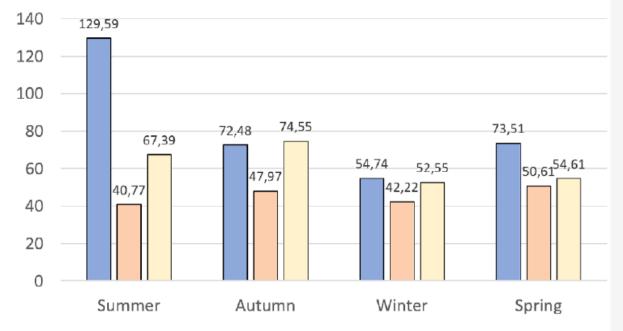

#### First evidences on Smart Operational Rating Worked Example - Frederick University Building



# First evidences on Smart Operational Rating Physical VS Digital World



#### First evidences on Smart Operational Rating Operational Assessment




■ Heating/Cooling, kWh/occupant ■ Lighting, kWh/occupant ■ Appliances, kWh, occupant

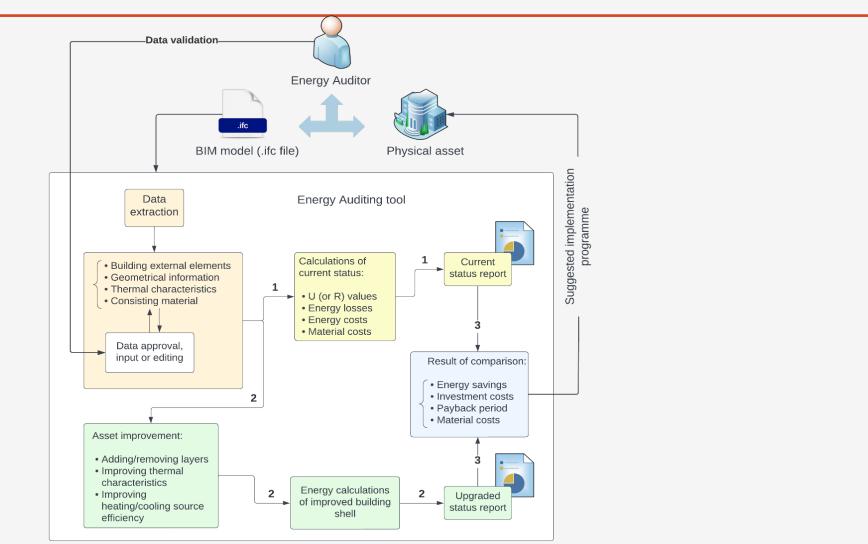
Spudys, P., Afxentiou, N., Georgali, P. Z., Klumbyte, E., Jurelionis, A., & Fokaides, P. (2023). Classifying the operational energy performance of buildings with the use of digital twins. Energy and Buildings, 290, 113106.

#### Table 4 Seasonal operational Indicators Load Amount Unit Summer Autumn Winter Spring Heating and Cooling/ 129.59 72.48 54.74 73.51 kWh/ Occupancy occupant Heating and Cooling 9.19 kWh/ 16.19 9.07 6.85 Consumption per h\*occupant Energy Carrier/ Occupancy-hours Heating and Cooling/ 5.53 5.62 kWh/m<sup>2</sup> 9.89 4.18 Area kWh/m Heating and Cooling/ 3.28 1.83 1.38 1.85 Volume kWh/ Lighting/Occupancy 40.77 47.97 42.22 50.61 (1st and 2nd floor) occupant Lighting/Occupancy 6.00 6.33 kWh/ 5.09 5.65 Hours (1st and 2nd h\*occupant floor) Lighting/Area (1st 3.70 3.90 kWh/m<sup>2</sup> 3.14 3.48 and 2nd floor) Lighting/Volume (1st kWh/m 1.05 1.24 1.17 1.30 and 2nd floor) Electrical Appliances 52.55 54.61 kWh/ 67.39 74.55 Energy occupant Consumption/ Occupancy (1st and 2nd floor) Electrical Appliances 8.43 9.33 6.57 6.83 kWh/ Energy h\*occupant Consumption/ Occupancy Hours (1st and 2nd floor) Electrical Appliances 5.19 5.74 4.20 kWh/m<sup>2</sup> 4.05 Energy Consumption/Area (1st and 2nd floor) Electrical Appliances 1.74 1.93 1.35 1.41 kWh/m<sup>3</sup> Energy Consumption/ Volume (1st and 2nd floor)

# First evidences on Smart Operational Rating Operational Assessment

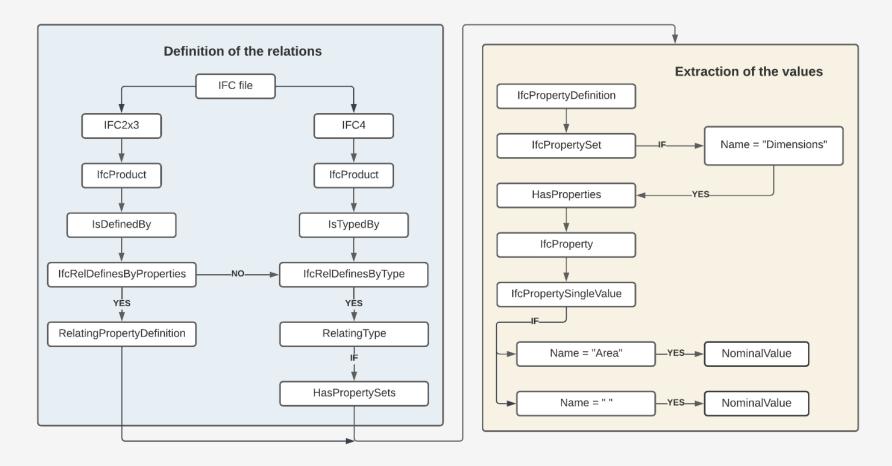


■ Heating/Cooling, kWh/occupant ■ Lighting, kWh/occupant ■ Appliances, kWh, occupant


Spudys, P., Afxentiou, N., Georgali, P. Z., Klumbyte, E., Jurelionis, A., & Fokaides, P. (2023). Classifying the operational energy performance of buildings with the use of digital twins. Energy and Buildings, 290, 113106.

#### Table 5

#### Annual operational indicators.


| Load                                                                       | Annual<br>Amount | Unit<br>kWh/occupant |  |
|----------------------------------------------------------------------------|------------------|----------------------|--|
| Total Power/Occupancy                                                      | 1692.76          |                      |  |
| Total Power/Occupancy Hours                                                | 211.62           | kWh/                 |  |
|                                                                            |                  | h*occupants          |  |
| Total Power/Area                                                           | 128.22           | kWh/m <sup>2</sup>   |  |
| Total Power/Volume                                                         | 41.95            | kWh/m <sup>3</sup>   |  |
| Heating Consumption per Energy Carrier/<br>Occupancy                       | 95.76            | kWh/<br>occupants    |  |
| Heating Consumption per Energy Carrier/                                    | 11.98            | kWh/                 |  |
| Occupancy-hours                                                            |                  | h*occupant           |  |
| Heating Consumption per Energy Carrier/Area                                | 7.31             | kWh/m <sup>2</sup>   |  |
| Heating Consumption per Energy Carrier/Volume                              | 2.41             | kWh/m <sup>3</sup>   |  |
| Cooling Consumption per Energy Carrier/                                    | 234.57           | kWh/                 |  |
| Occupancy                                                                  |                  | occupants            |  |
| Cooling Consumption per Energy Carrier/                                    | 29.32            | kWh/                 |  |
| Occupancy-hours                                                            |                  | h*occupant           |  |
| Cooling Consumption per Energy Carrier/Area                                | 17.91            | kWh/m <sup>2</sup>   |  |
| Cooling Consumption per Energy Carrier/Volume                              | 5.93             | kWh/m <sup>3</sup>   |  |
| Lighting/Occupancy (1st and 2nd floor)                                     | 184.57           | kWh/occupant         |  |
| Lighting/Occupancy Hours (1st and 2nd floor)                               | 23.07            | kWh/                 |  |
|                                                                            |                  | h*occupant           |  |
| Lighting/Area (1st and 2nd floor)                                          | 14.22            | kWh/m <sup>2</sup>   |  |
| Lighting/Volume (1st and 2nd floor)                                        | 4.76             | kWh/m <sup>3</sup>   |  |
| Electrical Appliances Energy Consumption/<br>Occupancy (1st and 2nd floor) | 249.10           | kWh/occupant         |  |
| Electrical Appliances Energy Consumption/                                  | 31.16            | kWh/                 |  |
| Occupancy Hours (1st and 2nd floor)                                        |                  | h*occupant           |  |
| Electrical Appliances Energy Consumption/Area<br>(1st and 2nd floor)       | 19.18            | kWh/m <sup>2</sup>   |  |
| Electrical Appliances Energy Consumption/<br>Volume (1st and 2nd floor)    | 6.43             | kWh/m <sup>3</sup>   |  |
| Ground floor Power/Occupancy (October 2021 –<br>May 2022)                  | 928.76           | kWh/occupant         |  |
| Ground floor Power/Occupancy Hours (October                                | 116.09           | kWh/                 |  |
| 2021 – May 2022)                                                           | 110.07           | h*occupant           |  |
| Ground floor Power/Area (October 2021 – May<br>2022)                       | 69.60            | kWh/m <sup>2</sup>   |  |
| Ground floor Power/Volume (October 2021 –<br>May 2022)                     | 22.42            | kWh/m³               |  |

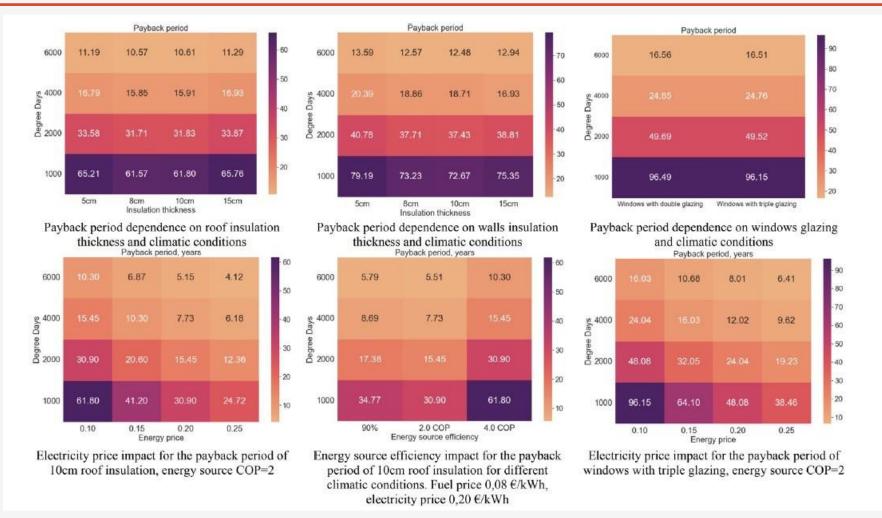
# First evidences on Smart Energy Audits



Spudys, P., Jurelionis, A., & Fokaides, P. (2023). Conducting smart energy audits of buildings with the use of building information modelling. Energy and Buildings, 285, 112884.

# First evidences on Smart Energy Audits Flowchart of asset property values extraction




# First evidences on Smart Energy Audits Material Relationship Schema



# First evidences on Smart Energy Audits Comparison Report



# First evidences on Smart Energy Audits Parametric assessment, payback period of potential energy upgrade



#### Task 1.1

•Klumbyte, E., Georgali, P. Z., Spudys, P., Giama, E., Morkunaite, L., Pupeikis, D., ... & Fokaides, P. (2023). Enhancing whole building life cycle assessment through building information modelling: Principles and best practices. Energy and Buildings, 296, 113401.

•Osadcha, I., Jurelionis, A., & Fokaides, P. (2023). Geometric parameter updating in digital twin of built assets: A systematic literature review. Journal of Building Engineering, 106704.

#### Task 1.3

•Tsalikidis, N., Mystakidis, A., Koukaras, P., Ivaškevicius ,M., Morkunaite, L., ...& Tzovaras D. (2024). Urban traffic congestion prediction: A multi-step approach utilizing sensor data and weather information. Smart Cities, (MDPI)



#### Task 1.1

• Spudys, P., Osadcha, I., Morkunaite, L., Clare, M.F., Georgali. P.Z., ... & Fokaides, P. (2024). A Comparative Life Cycle Assessment of Building Sustainability Across Typical European Building Geometries, Energy

•Osadcha, I., Jurelionis, A., & Fokaides, P. Patterns and trends in the application of Radio Frequency Identification (RFID) technology in the construction industry: A Latent Semantic Analysis. Journal of Building and Environment



# Boosting Research for a Smart and Carbon Neutral Built Environment with Digital Twins (SmartWins)

Assoc Prof Dr.-Ing. Paris A. Fokaides

Chair of the Research Group for Sustainable Energy in the Built Environment

Faculty of Civil Engineering and Architecture

Kaunas University of Technology

